Lima - Analyse the risk

Select area of interest in Lima
Choose future scenario

1. Water Scarcity Risks

1.1 Introduction to the area

Kimberly Clark has 2 mills close to the city of Lima in Peru. The mills are located in the basins of the rivers Rimac and Chillón in the districts of Ate and Puente Piedra respectively, and both in the province of Lima.

This is a highly populated area (8.5M people) gathering 30% of the total population in the country. In the region, 80% of the population lives in urban areas.

This is an important economic region for Peru. As it produces 40% GDP of the country’s GDP.

The arid climate that characterizes this area has an uneven distribution of water in time and space. The highlands receive 800-1500mm of rain per year, while downstream, close to the city, the precipitation can be as little as 50mm per year.  

Water resources management is organized by Basin Councils (“Consejos de Cuenca”). There is one council for the rivers Rimac-Chillón-Lurin together and therefore the water management is coordinated for the three basins.

Due to the high demand in the province of Lima, there are water transfers from a system of reservoirs upstream in the Rimac basin, but also in the Mantaro basin  located west from the Rimac. From the Mantaro basin, water is transferred through tunnels crossing the Andes.

Water resources of the three basins are managed together, but water availability and demand are much unevenly distributed in the three basins. With the objective to show these differences and the differences this causes in water scarcity risks, we have chosen to analyse the risk at  sub-basin level.

The unit of analysis of this study is thus sub-basin. Chillón, Rimac and Lurín together, count a total of 27 sub-basins (9 per basin).

1.2 Main Conclusions About Risk

Hydrological and social-economic related risks

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum

Global market and Policy related risks

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum
  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum

Environmental risks

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum
  • Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum

2. Risk assessment

2.1 Calculation approach

The WaterLOUPE water scarcity risk analysis shows the relative risks for the different sectors and user groups, now and in the future. The presented risk level of the area is the result of a combination of the hazard (drought conditions, reduced water availability), the exposure of water users in different sectors (domestic, nature, and economic) and the vulnerability levels of the different water users in the basin.

The following sections break down these different components the jointly lead to the presented water scarity risks. 

More on our risk calculation method

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum. Cras aliquet sapien non urna bibendum fermentum. Morbi luctus sagittis consequat. Ut dolor quam, tincidunt id nunc fermentum, faucibus pulvinar nisi. In lacinia ante est, ut porta felis fermentum sit amet. Proin feugiat sapien ut massa interdum, sit amet commodo dolor dapibus. Proin pulvinar eros sit amet consequat condimentum. Suspendisse vel magna et augue aliquam consectetur sit amet non lectus. Fusce sodales vel neque ac faucibus.

Proin a urna libero. Nam et bibendum metus. Donec pharetra augue nec dui ornare, quis finibus odio ullamcorper. In euismod ligula tincidunt, lacinia risus consectetur, cursus justo. Integer semper efficitur enim in interdum. Sed efficitur massa sit amet malesuada luctus. Duis eu est vulputate, dignissim quam sed, volutpat mi. Maecenas et turpis porttitor, viverra eros eu, porta lectus. Pellentesque sit amet enim tellus. Morbi sem massa, efficitur eget quam eu, convallis volutpat leo. Donec congue ultrices nisl ut sodales. Sed non vestibulum metus.

2.2 Water demand and availability

This chart provides information about the water demand from the different sectors and the water availability in the selected sub-basin. The information is shown for 2015, 2020 and two 10-year periods:  2025 - 2035, and 2035 - 2045. For each period, the average water demand and availability are shown.

Water demand is the sum of industrial, domestic, and agriculture (livestock and irrigation) water demand.

More information

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum. Cras aliquet sapien non urna bibendum fermentum. Morbi luctus sagittis consequat. Ut dolor quam, tincidunt id nunc fermentum, faucibus pulvinar nisi. In lacinia ante est, ut porta felis fermentum sit amet. Proin feugiat sapien ut massa interdum, sit amet commodo dolor dapibus. Proin pulvinar eros sit amet consequat condimentum. Suspendisse vel magna et augue aliquam consectetur sit amet non lectus. Fusce sodales vel neque ac faucibus.

2.3 Water Gap over time

In this graph information can be obtained about the water availability and the water demand in the selected sub-basin for the period 2010 - 2045. The graph presents monthly averages of water availability and water demand. In some sub-basins, like in Gangay or Bajo Rimac, there is a water gap almost every year between May and September, while in other sub-basins, like Medio Bajo Lurín or Santa Eulalia, there is never a water gap as the demand is really low and the availability high. The future water gap under SSP2 becomes bigger in the sub-basins that already had a water gap in the past, like in Bajo Rimac. That is mostly due to the increase of population and water demand, and also decrease of water availability. In the upstream basins, where water demands is very low, there is also no or very little water gap appearing in the future. The water gap appears in the months May to September. The results under SSP3 are very similar to under SPP2. In the basins where the population increase is more notorious in SSP3, the water gap is also bigger.
More information

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum. Cras aliquet sapien non urna bibendum fermentum. Morbi luctus sagittis consequat. Ut dolor quam, tincidunt id nunc fermentum, faucibus pulvinar nisi. In lacinia ante est, ut porta felis fermentum sit amet. Proin feugiat sapien ut massa interdum, sit amet commodo dolor dapibus. Proin pulvinar eros sit amet consequat condimentum. Suspendisse vel magna et augue aliquam consectetur sit amet non lectus. Fusce sodales vel neque ac faucibus.

2.4 Water Gap Score

These maps show the results of the Water Gap Score, which is composed by Frequency, Persistence and Severity for the selected period.

The Water Gap Score shows that mostly sub-basins in the north of Lima and south-eastern sub-basins in the Lurin basin have a water gap. Persistence and Severity are the two components of the index that contribute most to the Water Gap Score in this area.

Legend

Low risk 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 High risk

Water user not present -

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
More information

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum. Cras aliquet sapien non urna bibendum fermentum. Morbi luctus sagittis consequat. Ut dolor quam, tincidunt id nunc fermentum, faucibus pulvinar nisi. In lacinia ante est, ut porta felis fermentum sit amet. Proin feugiat sapien ut massa interdum, sit amet commodo dolor dapibus. Proin pulvinar eros sit amet consequat condimentum. Suspendisse vel magna et augue aliquam consectetur sit amet non lectus. Fusce sodales vel neque ac faucibus.

2.5 Water Gap Score per sector

Explanation

The Water Gap Score per sector shows that different sectors are affected per sub-basin. For example in the northern basin of Gangay (in dark orange), both the domestic sector and the agriculture have a high WGS, while the industrial sector has a low one as the water demand is lower. In the south, sub-basins such as Medio-alto Lurin and Alto Lurin present a high WGS for the domestic sector, and Alto Lurin also for the Industrial sector even if water demand for industry is low compared to other sub-basins. For both Medio alto Lurin y alto Lurin the WGS for the agricultural sector is low.

Legend

Low risk 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 High risk

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
More information

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum. Cras aliquet sapien non urna bibendum fermentum. Morbi luctus sagittis consequat. Ut dolor quam, tincidunt id nunc fermentum, faucibus pulvinar nisi. In lacinia ante est, ut porta felis fermentum sit amet. Proin feugiat sapien ut massa interdum, sit amet commodo dolor dapibus. Proin pulvinar eros sit amet consequat condimentum. Suspendisse vel magna et augue aliquam consectetur sit amet non lectus. Fusce sodales vel neque ac faucibus.

3. Vulnerability

Exposure and vulnerability are an essential part of water scarcity risk. The map in this section provide relevant exposure and vulnerability information (proxies) for each river basin.

Population Density

In the three basins, population is concentrated downstream, reaching values of 14,000 inhabitants per km2, while upstream, sub-basins in the Chillón and Lurín basins are practically inhabited. Most of the exposed population is thus downstream of the area.

Legend Population density (hab/km2)

Low  0 1 6 11 32 40 170 790 3600 11200 High

Water user not present -

0
1
6
11
32
40
170
790
3600
11200
20000

Poverty

Most of the basing have a poverty incidence between 15 and 20%, being the sub-basins with the highest percentage of poor inhabitants (between 30 and 35%) the southern sub-basins within the Lurin basin (Alto Lurin, Chamacna, Chalila, and Canchahuara). 

Legend Poverty (%)

Low  0 8 11 14 18 21 24 27 31 34 High

Water user not present -

0
8
11
14
18
21
24
27
31
34
35

Equity weight

In terms of the Equity weight (see formula below), the southern sub-basins within the Lurin basin (Alto Lurin, Chamacna, Chalila, and Canchahuara) have the highest score. The sub-basins with less poverty incidence and lower equity weight are Rimac, Medio Rimac, Gangay, Medio Chillón y Medio Alto Chillón.

Where:
Average poverty share of the subbasins = 17.91
Vulnerability factor = 0.5

Legend Equity weight

Low  0 0.6 0.7 0.8 1.9 1.0 1.1 1.2 1.3 1.4 High

Water user not present -

0
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
More information

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum. Cras aliquet sapien non urna bibendum fermentum. Morbi luctus sagittis consequat. Ut dolor quam, tincidunt id nunc fermentum, faucibus pulvinar nisi. In lacinia ante est, ut porta felis fermentum sit amet. Proin feugiat sapien ut massa interdum, sit amet commodo dolor dapibus. Proin pulvinar eros sit amet consequat condimentum. Suspendisse vel magna et augue aliquam consectetur sit amet non lectus. Fusce sodales vel neque ac faucibus.

4. Water Scarcity Index

The Water Scarcity Index is composed by the Water Gap Score and the Vulnerability.

Most of the sub-basins have a low WSI, including the Bajo Rimac where most of the population lives. However, Bajo Chillón y Bajo Lurin, also a very high populated areas, have a medium WSI. This score is mostly due to the Water Gap Score.

The southern sub-basins of the Lurin basin (Alto Lurin, Chalila, Medio Alto Lurin, Canchahuara and Medio Lurin) and the Socos basin in the north, score the highest Water Scarcity Index. These basins do not have a high population density, but they experience severe and persistence water scarcity and also are the most vulnerable sub-basins (highest poverty incidence and equity weight).

Future WSI

The Water Scarcity Index is calculated by multiplying the water gap score by the vulnerability factor. Since information on the change of vulnerability towards the future is not available, the current vulnerability factor was used for both scenarios. Therefore, the differences between the WSI under SSP2 and SSP3 is only due to the Water Gap Score and as mentioned before, that one is almost none.

The WSI For both SSP2 and SSP3 is the highest for the Lurin sub-basins, and particularly for the Alto Lurin, Chalila, Medio Alto Lurin, Medio Lurin and Canchahuara. Other sub-basins with a high risk are Medio Bajo Lurín, Bajo Lurín, Alto Chillón and Gangay. This last group of basins does not have a high WSI currently, but will have a much higher one by 2040.

Legend

Low risk 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 High risk

Water user not present -

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
More information

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent feugiat nunc at sodales elementum. Sed commodo, sapien ac blandit bibendum, ante dolor ullamcorper tellus, et egestas diam neque ut erat. Nulla auctor at libero ac interdum. Cras aliquet sapien non urna bibendum fermentum. Morbi luctus sagittis consequat. Ut dolor quam, tincidunt id nunc fermentum, faucibus pulvinar nisi. In lacinia ante est, ut porta felis fermentum sit amet. Proin feugiat sapien ut massa interdum, sit amet commodo dolor dapibus. Proin pulvinar eros sit amet consequat condimentum. Suspendisse vel magna et augue aliquam consectetur sit amet non lectus. Fusce sodales vel neque ac faucibus.

This graph shows again that the sub-basins that are most at risk are the ones for which both the Water Gap Score and the Vulnerability are high (Alto Lurin, Chalila, Canchahuara and Medio Alto Lurin).

Basins like Gangay or Rimac have a high Water Gap Score but a low vulnerability score, which probably makes them more resilient. Other basins, such as Chamacna, have a high vulnerability level but almost no water gap.